m at h . D G ] 1 7 M ay 2 00 5 AN OBSTRUCTION TO THE EXISTENCE OF CONSTANTSCALAR CURVATURE KÄHLER METRICS
نویسنده
چکیده
We prove that polarised manifolds that admit a constant scalar curvature Kähler (cscK) metric satisfy a condition we call slope semistability. That is, we define the slope µ for a projective manifold and for each of its subschemes, and show that if X is cscK then µ(Z) ≤ µ(X) for all subschemes Z. This gives many examples of manifolds with Kähler classes which do not admit cscK metrics, such as del Pezzo surfaces and projective bundles. If P(E) → B is a projective bundle which admits a cscK metric in a rational Kähler class with sufficiently small fibres, then E is a slope semistable bundle (and B is a slope semistable polarised manifold). The same is true for all rational Kähler classes if the base B is a curve. We also show that the slope inequality holds automatically for smooth curves, canonically polarised and Calabi Yau manifolds, and manifolds with c1(X) < 0 and L close to the canonical polarisation.
منابع مشابه
M ay 2 00 7 Remarks on the existence of bilaterally symmetric extremal
The study of extremal Kähler metric is initiated by the seminar work of Calabi [4], [5]. Let (M, [ω]) be a compact Kähler manifold with fixed Kähler class [ω]. The extremal Kähler metric is the critical point of the Calabi energy C(g) for any Kähler metrics g in the fixed Kähler class [ω], C(g) = M s 2 dµ, where s is the scalar curvature of g. The extremal condition asserts that ¯ ∂∇s = 0. In o...
متن کاملTotally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملM ay 2 00 6 A closed symplectic four - manifold has almost Kähler metrics of negative scalar curvature
We show that every closed symplectic four-dimensional manifold (M,ω) admits an almost Kähler metric of negative scalar curvature compatible with ω.
متن کاملun 2 00 7 Remarks on the existence of bilaterally symmetric
The study of extremal Kähler metric is initiated by the seminal works of Calabi [4], [5]. Let (M, [ω]) be a compact Kähler manifold with fixed Kähler class [ω]. For any Kähler metrics g in the fixed Kähler class [ω], the Calabi energy C(g) is defined as C(g) = M s 2 dµ, where s is the scalar curvature of g. The extremal Kähler metric is the critical point of the Calabi energy. The Euler-Lagrang...
متن کاملKähler Metrics of Constant Scalar Curvature on Hirzebruch Surfaces
It is shown that a Hirzebruch surface admits a Kähler metric (possibly indefinite) of constant scalar curvature if and only if its degree equals zero. There have been many extensive studies for positive-definite Kähler metrics of constant scalar curvature, especially, Kähler Einstein metrics and scalar-flat Kähler metrics, on existence, uniqueness, obstructions, and relationships with other not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004